• Gunung Berapi

     Gunung berapi atau gunung api secara umum adalah istilah yang dapat didefinisikan sebagai suatu sistem saluran fluida panas (batuan dalam wujud cair atau lava) yang memanjang dari kedalaman sekitar 10 km di bawah permukaan bumi sampai ke permukaan bumi, termasuk endapan hasil akumulasi material yang dikeluarkan pada saat meletus.

    Gunung berapi di Bumi terbentuk dikarenakan keraknya terpecah menjadi 17 lempeng tektonik utama yang kaku dan mengambang di atas lapisan mantel yang lebih panas dan lunak. Oleh karena itu, gunung berapi di Bumi sering ditemukan di batas divergen dan konvergen dari lempeng tektonik. Gunung berapi biasanya tidak terbentuk di wilayah dua lempeng tektonik bergeser satu sama lain.

    Bahaya dari debu vulkanik adalah terhadap penerbangan khususnya pesawat jet karena debu tersebut dapat merusak turbin dari mesin jet. Letusan besar dapat mempengaruhi suhu dikarenakan asap dan butiran asam sulfat yang dimuntahkan letusan dapat menghalangi matahari dan mendinginkan bagian bawah atmosfer bumi seperti troposfer, tetapi material tersebut juga dapat menyerap panas yang dipancarkan dari bumi sehingga memanaskan stratosfer.

    Lebih lanjut, istilah "gunung api" juga dipakai untuk menamai fenomena pembentukan ice volcano (gunung api es) dan mud volcano (gunung api lumpur). Gunung api es biasa terjadi di daerah garis lintang tinggi yang mempunyai musim dingin bersalju.

    Gunung berapi terdapat di seluruh dunia, tetapi lokasi gunung berapi yang paling dikenali adalah gunung berapi yang berada di sepanjang busur Cincin Api Pasifik (Pacific Ring of Fire). Busur Cincin Api Pasifik merupakan garis bergeseknya antara dua lempengan tektonik dan lebih, dimana Lempeng Pasifik saling bergesek dengan lempeng-lempeng tetangganya.

    Gunung berapi dapat dijumpai dalam beberapa bentuk sepanjang masa hidupnya. Gunung berapi yang aktif mungkin berubah fase menjadi separuh aktif, istirahat, sebelum akhirnya menjadi tidak aktif atau mati. Namun gunung berapi mampu istirahat dalam waktu yang sangat lama, lebih dari ribuan tahun sebelum berubah menjadi aktif kembali.

    Letusan gunung berapi terjadi apabila magma naik melintasi kerak bumi dan muncul di atas permukaan. Apabila gunung berapi meletus, magma yang terkandung di dalam kamar magma di bawah gunung berapi meletus keluar sebagai lava, dimana lava ini dapat berubah menjadi lahar setelah mengalir dan bercampur dengan material-material di permukaan bumi. Selain dari aliran lava, kehancuran yang disebabkan oleh letusan gunung berapi.

    Ilmu yang mempelajari gunung berapi dinamakan Vulkanologi, dimana ilmu ini mempelajari letusan gunung berapi untuk tujuan memperkirakan kemungkinan letusan yang bisa terjadi dari suatu gunung berapi, sehingga dampak negatif letusan gunung berapi dapat ditekan.



    Wilayah pembentukan

    Gunung berapi di Bumi terbentuk dari aktivitas lempeng tektonik di kerak yang saling bergesekan dan menekan satu sama lain. Oleh karenanya gunung berapi banyak ditemukan dekat dengan perbatasan lempeng tektonik. Secara geologis, Wilayah dimana gunung berapi terbentuk dibagi tiga, yaitu:

    Batas divergen antar lempeng

    Apabila kedua lempeng tektonik bergerak saling menjauhi satu sama lain, maka kerak samudra yang baru akan terbentuk dari keluarnya magma ke permukaan dasar laut. Wilayah antara kedua lempeng yang saling menjauh ini dinamakan dengan batas divergen. Aktivitas ini lalu akan memunculkan Punggung tengah samudra yang terbentuk dari pendinginan magma yang muncul ke permukaan. Gunung berapi yang terbentuk dari aktivitas ini berada di bawah laut, yang ditandai dengan fenomena Ventilasi hidrotermal. Apabila punggung tengah samudra ini mencuat sampai ke permukaan laut, maka kepulauan vulkanik akan terbentuk, contohnya adalah Islandia.

    Batas konvergen antar lempeng

    Berbeda dengan batas divergen yang tercipta dari pergerakan kedua lempeng tektonik yang saling menjauh, Batas konvergen antar lempeng merupakan wilayah dimana dua lempeng atau lebih bertemu lalu saling menekan dan mengalami subduksi sehingga tepian di satu lempeng menindih tepian yang lain.[4] Penindihan lempeng ini ditandai dengan terbentuknya bentang alam berupa palung di dasar laut. Fenomena ini menimbulkan melelehnya material yang terdapat di mantel bumi, sehingga material tersebut menjadi magma dan naik ke permukaan kerak yang tipis. Gunung berapi di wilayah ini terbentuk dari pertemuan antara kedua lempeng kerak samudra atau antara lempeng kerak samudra dan benua. Pertemuan antara kedua lempeng kerak benua biasanya tidak memicu pembentukan gunung berapi dikarenakan kerak benua memiliki ketebalan yang tidak dapat ditembus oleh magma di bawah permukaan. Contoh dari gunung berapi ini adalah jajaran gunung berapi di Cincin Api Pasifik, atau Gunung Etna di Italia.

    Titik panas

    Titik panas merupakan suatu wilayah vulkanik dimana magma naik ke permukaan dikarenakan adanya celah di kerak bumi yang memungkinkan pergerakan tersebut. Titik panas dapat ditemukan jauh dari batas antar kedua lempeng tektonik. Pergerakan ini memunculkan gunung berapi yang memiliki ciri letusan efusif yang lemah dimana lava muncul ke permukaan secara halus. Dikarenakan lempeng tektonik terus bergerak secara perlahan, wilayah titik panas dapat membentuk gunung berapi yang berbeda-beda sesuai dengan jalur pergerakan suatu lempeng. Kepulauan Hawaii merupakan kepulauan yang terbentuk dari aktivitas vulkanik di titik panas di Samudra Pasifik.

    Jenis gunung berapi berdasarkan bentuknya

    Perisai
    Tersusun dari batuan aliran lava yang dengan kekentalan rendah yang membeku, sehingga tidak sempat membentuk suatu kerucut yang tinggi (curam), bentuknya akan berlereng landai, dan susunannya terdiri dari batuan yang bersifat basaltik. Gunung seperti ini umumnya hanya mengalami erupsi efusif yang relatif lemah. Contoh bentuk gunung berapi ini terdapat di kepulauan HawaiIslandia, dan Afrika Timur.
    Stratovulkan
    Potongan melintang sebuah stratovulkan (tidak sesuai skala):
    1. Dapur magma
    2. Batuan dasar
    3. Pipa kawah
    4. Dasar gunung
    5. Sill
    6. Dike
    7. Lapisan debu vulkanik
    8. Flank
    9. Lapisan lava yang dimuntahkan oleh gunung berapi
    10. Kepundan
    11. Kerucut parasit
    12. Aliran lava
    13. Vent
    14. Kawah
    15. Awan debu
    Tersusun dari tefra dan lava hasil erupsi dengan tipe letusan berubah-ubah sehingga dapat menghasilkan susunan yang berlapis-lapis dari beberapa jenis batuan. Lapisan lava tersebut kemudian terakumulasi hingga membentuk suatu kerucut besar (raksasa) yang terkadang memiliki bentuk tidak beraturan. Gunung Merapi di Yogyakarta, Gunung Fuji di JepangGunung Mayon di FilipinaGunung Vesuvius, dan Gunung Stromboli di Italia merupakan contoh dari gunung berapi jenis ini.
    Lava yang berasal dari stratovulkan umumnya mengandung lebih banyak gas dan silika daripada lava yang dihasilkan oleh gunung berapi tipe perisai. Kombinasi ini menyebabkan lava dari stratovulkan menjadi lebih kental[6] dan menghasilkan lebih banyak abu vulkanik. Gunung berapi tipe stratovulkan juga memiliki lereng yang cukup curam, contohnya Gunung Popocatépetl yang lerengnya memiliki gradien rata-rata sekitar 14,04° (25%) dan gradien maksimum sebesar 32,21° (63%).[7]
    Kerucut bara (Cinder cone)
    Merupakan gunung berapi yang abu dan pecahan kecil batuan vulkanik menyebar di sekeliling gunung. Sebagian besar gunung jenis ini membentuk mangkuk di puncaknya. Jarang yang tingginya di atas 500 meter dari tanah di sekitarnya.
    Kaldera
    Gunung berapi jenis ini terbentuk dari ledakan yang sangat kuat di masa lalu yang melempar bagian atas dan tepi gunung sehingga membentuk cekungan. Gunung Bromo merupakan jenis ini, dimana kaldera tengger yang ada pada saat ini merupakan hasil letusan besar di masa lalu.
    Maar
    Maar merupakan gunung berapi dengan ketinggian rendah dan diameter kepundan yang lebar, dimana gunung berapi ini terbentuk dari letusan freatomagmatik yang disebabkan oleh tercampurnya magma dengan air di bawah tanah. Saat tidak aktif, maar biasanya terisi oleh air sehingga tampak seperti sebuah danau biasa.

    Klasifikasi gunung berapi berdasarkan aktivitas vulkanik

    Gunung-gunung berapi memiliki perbedaan pada tingkat aktivitasnya. Beberapa gunung berapi dapat meletus beberapa kali dalam setahun, tetapi ada pula yang hanya meletus tiap puluhan ribu tahun sekali. Gunung berapi dapat diklasifikasikan secara informal sebagai aktiftidur, atau mati, meskipun batasan dari klasifikasi ini tidak begitu jelas.

    Aktif

    Tidak ada konsensus yang mampu mendefinisikan kapan gunung berapi dikatakan "aktif". Umur dari sebuah gunung berapi bervariasi, mulai dari beberapa minggu hingga jutaan tahun. Umur yang panjang ini terkadang jauh melampaui umur manusia atau bahkan peradaban di Bumi. Contohnya, sebuah gunung berapi telah meletus puluhan kali dalam beberapa ribu tahun terakhir, meskipun gunung tersebut saat ini tidak menunjukkan tanda-tanda aktivitas vulkanik. Kondisi ini merupakan contoh gunung yang sebenarnya aktif, tetapi tampak mati bagi manusia yang berumur jauh lebih pendek dibandingkan gunung tersebut.

    Ilmuan biasanya menganggap sebuah gunung berapi mengalami erupsi atau akan mengalami erupsi berdasarkan beberapa faktor seperti aktivitas kegempaan, emisi gas dari gunung, dan sebagainya. Sebagian besar ilmuwan menganggap gunung berapi "aktif" apabila gunung tersebut pernah mengalami erupsi dalam kurun waktu 10.000 tahun (masa holosen)—kriteria yang sama juga digunakan oleh Program Global Volcanism Smithsonian. Hingga September 2020, program tersebut mencatat 1420 gunung berapi aktif yang pernah mengalami erupsi pada masa Holosen. Sebagian besar gunung berapi tersebut terletak di Cincin Api Pasifik dan lebih dari 500 juta orang tinggal di dekat gunung berapi. 

    Dasar lain yang digunakan dalam menentukan apakah gunung berapi aktif atau tidak adalah menggunakan catatan sejarah. Dasar ini sebenarnya menimbulkan masalah baru karena catatan sejarah pada setiap daerah di dunia berbeda-beda. Di Tiongkok dan daerah Mediterania, catatan sejarah mencatat peristiwa yang terjadi hingga 3000 tahun yang lalu, tetapi catatan sejarah di barat laut Amerika Serikat dan Kanada hanya mencatat peristiwa yang terjadi kurang dari 300 tahun yang lalu. Sejarah di Hawaii dan Selandia Baru bahkan hanya mencatat peristiwa yang terjadi sekitar 200 tahun yang lalu. Meskipun demikian, Catalogue of the Active Volcanoes of the World yang diterbikan per bagian oleh Asosiasi Vulkanologi Internasional antara tahun 1951 dan 1975 menggunakan dasar ini untuk menyematkan status aktif pada 500 gunung berapi di dunia

    Hingga tahun 2021, berikut adalah lima dari gunung berapi paling aktif di Indonesia:[

    Tidur

    Gunung berapi tidur adalah gunung berapi yang tidak pernah tercatat mengalami erupsi, tetapi bisa mengalami erupsi lagi di masa mendatang. Gunung berapi dapat tetap bertahan pada status ini dalam waktu yang lama, seperti Yellowstone yang telah berada pada masa istirahat sejak 70.000 tahun yang lalu. Contoh lainnya adalah Gunung Sinabung yang telah beristirahat setidaknya selama 1200 tahun hingga akhirnya kembali menunjukkan aktivitas vulkanik pada tahun 2010.

    Mati

    Gunung berapi mati atau padam adalah gunung berapi yang tidak pernah tercatat mengalami erupsi dan kemungkinan tidak akan mengalami erupsi karena tidak lagi memiliki suplai magma. Contoh dari gunung berapi mati adalah, Gunung Hohentwiel di Jerman, Gunung Shiprock di New Mexico, dan Gunung Zuidwal di Belanda. Istilah gunung mati sebenarnya masih diperdebatkan karena umur gunung jauh lebih panjang daripada umur manusia yang mengamatinya. Beberapa gunung bahkan mengalami erupsi setelah dinyatakan sebagai gunung mati, seperti Gunung Fourpeaked di Alaska yang meletus pada tahun 2006 tanpa adanya catatan aktivitas vulkanik selama masa holosen.

    Klasifikasi gunung berapi berdasarkan frekuensi letusan di Indonesia

    Kalangan vulkanologi Indonesia mengelompokkan gunung berapi ke dalam tiga tipe berdasarkan catatan sejarah letusan/erupsinya.

    • Gunung api Tipe A: tercatat pernah mengalami erupsi magmatik sekurang-kurangnya satu kali sesudah tahun 1600.
    • Gunung api Tipe B: sesudah tahun 1600 belum tercatat lagi mengadakan erupsi magmatik namun masih memperlihatkan gejala kegiatan vulkanik seperti kegiatan solfatara.
    • Gunung api Tipe C: sejarah erupsinya tidak diketahui dalam catatan manusia, tetapi masih terdapat tanda-tanda kegiatan masa lampau berupa lapangan solfatara/fumarola pada tingkah lemah.

    Skema peringatan gunung berapi di Indonesia

    Tingkatan status gunung berapi di Indonesia menurut Badan Geologi Kementerian ESDM
    StatusMaknaTindakan
    AWAS
    • Menandakan gunung berapi yang segera atau sedang meletus atau ada keadaan kritis yang menimbulkan bencana
    • Letusan pembukaan dimulai dengan abu dan asap
    • Letusan berpeluang terjadi dalam waktu 24 jam
    • Wilayah yang terancam bahaya direkomendasikan untuk dikosongkan
    • Koordinasi dilakukan secara harian
    • Piket penuh
    SIAGA
    • Menandakan gunung berapi yang sedang bergerak ke arah letusan atau menimbulkan bencana
    • Peningkatan intensif kegiatan seismik
    • Semua data menunjukkan bahwa aktivitas dapat segera berlanjut ke letusan atau menuju pada keadaan yang dapat menimbulkan bencana
    • Jika tren peningkatan berlanjut, letusan dapat terjadi dalam waktu 2 minggu
    • Sosialisasi di wilayah terancam
    • Penyiapan sarana darurat
    • Koordinasi harian
    • Piket penuh
    WASPADA
    • Ada aktivitas apa pun bentuknya
    • Terdapat kenaikan aktivitas di atas level normal
    • Peningkatan aktivitas seismik dan kejadian vulkanis lainnya
    • Sedikit perubahan aktivitas yang diakibatkan oleh aktivitas magma, tektonik dan hidrotermal
    • Penyuluhan/sosialisasi
    • Penilaian bahaya
    • Pengecekan sarana
    • Pelaksanaan piket terbatas
    NORMAL
    • Tidak ada gejala aktivitas tekanan magma
    • Level aktivitas dasar
    • Pengamatan rutin
    • Survei dan penyelidikan

    Jenis erupsi

    Secara umum, erupsi gunung berapi dibagi menjadi erupsi magmatik, freatomagmatik, dan freatik.

    Erupsi magmatik

    Erupsi magmatik disebabkan oleh pelepasan gas akibat peristiwa dekompresi. Magma dengan kekentalan rendah dan sedikit kandungan gas akan menghasilkan erupsi yang relatif lemah. Sebaliknya, magma kental yang memiliki kandungan gas dalam jumlah yang besar dapat menghasilkan erupsi yang kuat. Jenis erupsi berikut merupakan erupsi yang namanya berasal dari peristiwa sejarah:

    • Erupsi Hawaiian adalah erupsi gunung berapi yang memuntahkan lava mafik dengan kandungan gas yang relatif sedikit. Erupsi ini hanya menghasilkan aliran lava cair, tetapi hanya sedikit mengeluarkan tefra. Jenis erupsi ini dapat membentuk gunung berapi landai dengan diameter lebar seperti Gunung Mauna Loa. Nama erupsi ini berasal dari nama gunung-gunung berapi di Hawaii.
    • Erupsi Strombolian memuntahkan magma dengan kekentalan dan kandungan gas yang lebih tinggi daripada erupsi Hawaiian. Erupsi ini memiliki berupa letusan-letusan kecil yang terjadi tiap beberapa menit. Nama erupsi ini berasal dari Stromboli, nama pulau dan gunung berapi di Italia.
    • Erupsi Vulkanian melepaskan magma dengan kekentalan yang lebih tinggi. Nama erupsi ini berasal dari Vulcano, sebuah pulau gunung berapi kecil di daerah Mediterania.
    • Erupsi Peléan ditandai dengan aliran piroklastik dari sisi puncak gunung berapi yang runtuh akibat tekanan tinggi atau gempa bumi. Nama erupsi ini berasal dari nama Gunung Pelée.
    • Erupsi Plinian merupakan erupsi kuat yang melontarkan tefra dalam jumlah yang besar. Erupsi ini juga dapat melontarkan sebagian besar kerucut gunung dan menyebabkan terbentuknya aliran piroklastik. Nama ini berasal dari nama Plinius Muda yang mencatat erupsi Gunung Vesuvius pada tahun 79 M.
    • Erupsi Krakatoan merupakan erupsi dahsyat yang mampu melontarkan nyaris keseluruhan kerucut gunung. Nama erupsi ini berasal dari nama Gunung Krakatau yang berada di Selat Sunda.

    Intensitas erupsi gunung berapi diukur menggunakan Volcanic Explosivity Index (VEI) yang memiliki rentang skala 0 untuk erupsi Hawaiian, hingga skala 8 untuk erupsi megakolosal.

    Erupsi freatomagmatik

    Erupsi freatomagmatik diawali dengan interaksi antara magma dengan air tanah. Akibat adanya perbedaan temperatur yang signifikan, terjadi kenaikan tekanan dalam waktu singkat yang berujung pada ledakan. Ledakan tersebut melontarkan uap air dan pecahan piroklastik ke udara. Tidak seperti erupsi freatik, erupsi freatomagmatik juga melontarkan partikel juvenil.

    Erupsi freatik

    Sama seperti erupsi freatiomagmatik, erupsi freatik disebabkan oleh kontak antara air tanah dengan batuan panas atau magma. Ledakan kemudian terjadi akibat adanya peningkatan temperatur air dalam waktu yang singkat. Erupsi ini hanya melontarkan uap dan bagian dari dinding kawah.

    Material erupsi

    Material yang dilepaskan oleh gunung berapi saat erupsi dapat diklasifikasikan menjadi tiga jenis:

    1. Gas vulkanik, campuran dari uap airkarbon dioksida, dan belerang (dapat berupa sulfur dioksida, SO2, atau hidrogen sulfida, H2S, tergantung temperatur saat letusan)
    2. Lava, magma yang mencapai permukaan Bumi
    3. Tefra, material padat dengan berbagai bentuk dan ukuran yang dilontarkan ke udara

    Gas vulkanik

    Konsentrasi gas vulkanik dari erupsi satu gunung bisa berbeda dari gunung lainnya. Gas vulkanik dapat berupa hidrogen sulfida, sulfur dioksida, hidrogen klorida, dan hidrogen fluorida. Gas lain berupa hidrogennitrogen, dan karbon monoksida juga termasuk gas vulkanik yang dierupsikan gunung berapi.

    Aliran lava

    Bentuk dan tipe erupsi gunung berapi bergantung pada komposisi lava yang dierupsikannya. Karakteristik paling penting dari magma adalah kekentalan dan jumlah gas yang terlarut di dalamnya. Kedua karakteristik tersebut juga dipengaruhi oleh jumlah kandungan silika pada magma. Magma yang mengandung banyak silika cenderung lebih kental dan mengandung lebih banyak gas daripada magma yang mengandung lebih sedikit kandungan silikanya.

    Tefra

    Tefra terbentuk ketika magma yang meletus akibat gas panas yang mengembang dalam waktu yang cepat. Ledakan kuat ini menghasilkan partikel material yang beterbangan dari gunung berapi. Partikel padat dengan diameter kurang dari 2 mm disebut sebagai abu vulkanik.

    Dampak terhadap manusia

    Erupsi gunung berapi memberikan bahaya besar bagi peradaban manusia. Meskipun demikian, aktivitas vulkanik juga memberikan manfaat.

    Dampak buruk

    Terdapat beberapa peristiwa yang merupakan akibat dari erupsi gunung berapi, seperti aliran piroklastiklahar, dan emisi karbon dioksida. Aktivitas vulkanik juga menyebabkan beberapa peristiwa lain seperti gempa bumi, fumarolkolam lumpur, dan geiser. Beberapa peristiwa tersebut sering kali memberikan dampak buruk secara langsung bagi aktivitas manusia.

    Gas vulkanik dapat mencapai lapisan stratosfer sehingga dapat membentuk aerosol asam sulfat yang mampu menghamburkan radiasi dari Matahari dan menurunkan temperatur di permukaan Bumi. Hal seperti ini kemungkinan pernah terjadi pada Gunung Huaynaputina sekitar tahun 1600, ketika gas vulkanik di atmosfer menyebabkan terjadinya bencana kelaparan Rusia antara tahun 1601-1603.Reaksi kimia yang terjadi pada aerosol sulfat di stratosfer juga dapat merusak lapisan ozon. Zat asam seperti hidrogen klorida (HCl) dan hidrogen fluorida (HF) dapat jatuh ke permukaan Bumi sebagai hujan asam.Erupsi eksplosif gunung berapi juga dapat melepaskan gas rumah kaca seperti karbon dioksida.

    Abu vulkanik yang dilontarkan ke udara dapat membahayakan pesawat, terutama pesawat jet. Partikel yang masuk ke dalam mesin jet dapat meleleh akibat temperatur tinggi dan turbin mesin. Selain itu, abu vulkanik dengan kecepatan tinggi dapat merusak bagian luar pesawat, instrumen navigasi, dan sistem komunikasi.Gangguan-gangguan seperti dapat menyebabkan terganggunya penerbangan akibat penundaan dan pengalihan rute penerbangan.

    Musim dingin vulkanik diduga sempat terjadi 70.000 tahun yang lalu ketika terjadinya erupsi dahsyat Gunung Toba di Pulau Sumatra. Peristiwa ini mungkin telah menyebabkan terjadinya leher botol populasi yang memengaruhi genetika manusia zaman sekarang.Pada tahun 1815, erupsi Gunung Tambora menyebabkan anomali iklim global yang dikenal sebagai "Year Without a Summer". Erupsi besar gunung berapi juga kemungkinan telah menyebabkan setidaknya satu peristiwa kepunahan masal.

    Dampak baik

    Meskipun erupsi gunung berapi dianggap sebagai bencana yang membahayakan manusia, aktivitas vulkanik di masa lalu dapat mendukung perkembangan sumber daya di sekitarnya. Abu vulkanik yang dilepaskan oleh gunung berapi mengandung zat nutrisi yang dapat menyuburkan tanah. Aktivitas vulkanik juga disertai dengan aliran panas dari dalam Bumi yang dapat dimanfaatkan untuk pembangkit listrik tenaga panas bumi.

    SUMBER:

    https://id.wikipedia.org/wiki/Gunung_berapi

    https://images.app.goo.gl/zuG1vvgEkHnXW58W6

  • Gempa Bumi

    Pengertian Gempa Bumi – Gempa bumi adalah getaran atau guncangan yang terjadi di permukaan bumi akibat pelepasan energi dari bawah permukaan secara tiba-tiba yang menciptakan gelombang seismik. Gempa bumi biasa disebabkan oleh pergerakan kerak bumi atau lempeng bumi. Selain itu gempa bumi juga bisa disebabkan oleh letusan gunung api.

    Gempa bumi juga bisa diartikan sebagai suatu peristiwa bergetarnya bumi akibat pelepasan energi di dalam bumi secara tiba-tiba yang ditandai dengan patahnya lapisan batuan pada kerak bumi. Frekuensi gempa bumi di suatu wilayah mengacu pada jenis dan ukuran gempa bumi yang di alami selama periode waktu. Gempa bumi diukur dengan menggunakan alat Seismometer. Moment magnitudo adalah skala yang paling umum di mana gempa bumi terjadi untuk seluruh dunia. Skala Rickter adalah skala yang di laporkan oleh observatorium seismologi nasional yang di ukur pada skala besarnya lokal 5 magnitudo. Kedua skala yang sama selama rentang angka mereka valid. Gempa 3 magnitudo atau lebih sebagian besar hampir tidak terlihat dan besarnya 7 kali lebih berpotensi menyebabkan kerusakan serius di daerah yang luas, tergantung pada kedalaman gempa.

    Gempa Bumi terbesar bersejarah besarnya telah lebih dari 9 skala rickter, meskipun tidak ada batasan besarnya. Gempa Bumi besar terakhir besarnya 9,0 atau lebih besar adalah 9,0 magnitudo yaitu gempa di Jepang pada tahun 2011 , dan itu adalah gempa Jepang terbesar sejak pencatatan dimulai. Intensitas getaran diukur pada modifikasi Skala Mercalli.

    Jenis-Jenis Gempa Bumi
    Jenis-jenis gempa bumi dibedakan menjadi 2 yaitu berdasarkan penyebab dan kedalamannya. Berikut ini merupakan penjelasannya :

    a. Berdasarkan Penyebabnya
    Menurut penyebab terjadinya, gempa bumi dibedakan menjadi tiga jenis, yaitu :

    1. Gempa Vulkanik
    Gempa bumi vulkanik adalah gempa bumi yang disebabkan oleh letusan gunung berapi. Contoh : gempa G. Bromo, gempa G. Una-Una, gempa G. Krakatau.

    2. Gempa Tektonik
    Gempa tektonik adalah gempa bumi yang terjadi karena pergeseran lapisan kulit bumi akibat lepasnya energi di zone penunjaman. Gempa bumi tektonik memiliki kekuatan yang cukup dahsyat. Contoh : gempa Aceh, Bengkulu, Pangandaran.

    3. Gempa runtuhan atau terban
    Gempa runtuhan atau terban adalah gempa bumi yang disebabkan oleh tanah longsor, gua-gua yang runtuh, dan sejenisnya. Tipe gempa seperti ini hanya berdampak kecil dan wilayahnya sempit.

    b. Berdasarkan Kedalamannya
    Berdasarkan kedalamannya, jenis-jenis gempa bumi juga dibedakan menjadi 3, yaitu :

    1. Gempa bumi dalam
    Gempa bumi dalam adalah gempa bumi yang hiposentrumnya (pusat gempa) berada lebih dari 300 km di bawah permukaan bumi (di dalam kerak bumi). Gempa bumi dalam pada umumnya tidak terlalu berbahaya.

    2. Gempa bumi menengah
    Gempa bumi menengah adalah gempa bumi yang hiposentrumnya berada antara 60 km sampai 300 km di bawah permukaan bumi.gempa bumi menengah pada umumnya menimbulkan kerusakan ringan dan getarannya lebih terasa.

    3. Gempa bumi dangkal
    Gempa bumi dangkal adalah gempa bumi yang hiposentrumnya berada kurang dari 60 km dari permukaan bumi. Gempa bumi ini biasanya menimbulkan kerusakan yang besar.

    Parameter Gempa Bumi
    Waktu terjadinya gempabumi (Origin Time – OT)
    Lokasi pusat gempabumi (Episenter)
    Kedalaman pusat gempabumi (Depth)
    Kekuatan Gempabumi (Magnitudo)
    Karakteristik Gempa Bumi
    Berlangsung dalam waktu yang sangat singkat
    Lokasi kejadian tertentu
    Akibatnya dapat menimbulkan bencana
    Berpotensi terulang lagi
    Belum dapat diprediksi
    Tidak dapat dicegah, tetapi akibat yang ditimbulkan dapat dikurangi
    Penyebab Terjadinya Gempa Bumi
    Kebanyakan gempa bumi disebabkan dari pelepasan energi yang dihasilkan oleh tekanan yang disebabkan oleh lempengan yang bergerak. Semakin lama tekanan itu kian membesar dan akhirnya mencapai pada keadaan di mana tekanan tersebut tidak dapat ditahan lagi oleh pinggiran lempengan. Pada saat itulah gempa Bumi akan terjadi.

    Gempa Bumi biasanya terjadi di perbatasan lempengan-lempengan tersebut. Gempa Bumi yang paling parah biasanya terjadi di perbatasan lempengan kompresional dan translasional. Gempa Bumi fokus dalam kemungkinan besar terjadi karena materi lapisan litosfer yang terjepit kedalam mengalami transisi fase pada kedalaman lebih dari 600 km.

    Beberapa gempa Bumi lain juga dapat terjadi karena pergerakan magma di dalam gunung berapi. Gempa Bumi seperti itu dapat menjadi gejala akan terjadinya letusan gunung berapi. Beberapa gempa Bumi (jarang namun) juga terjadi karena menumpuknya massa air yang sangat besar di balik dam, seperti Dam Karibia di Zambia, Afrika. Sebagian lagi (jarang juga) juga dapat terjadi karena injeksi atau akstraksi cairan dari/ke dalam Bumi (contoh. pada beberapa pembangkit listrik tenaga panas Bumi dan di Rocky Mountain Arsenal. Terakhir, gempa juga dapat terjadi dari peledakan bahan peledak. Hal ini dapat membuat para ilmuwan memonitor tes rahasia senjata nuklir yang dilakukan pemerintah. Gempa Bumi yang disebabkan oleh manusia seperti ini dinamakan juga seismisitas terinduksi.

    Akibat Gempa Bumi
    Akibat yang ditimbulkan oleh gempa bumi diantaranya adalah :

    1. Dampak fisik :
    Bangunan banyak yang hancur atau roboh.
    Tanah longor akibat goncangan.
    Jatuhnya korban jiwa.
    Permukaan tanah menjadi merekat, retak dan jalan menjadi putus.
    Banjir karena rusaknya tanggul.
    Gempa dasar laut dapat menyebabkan tsunami, dsb.
    2. Dampak sosial :
    Menimbulkan kemiskinan.
    Kelaparan.
    Menimbulkan penyakit.
    Bila pada sekala yang besar (dapat menimbulkan tsunami yang besar), bisa melumpuhkan politik, sistem ekonomi, dsb.

    Cara Menghadapi Gempa Bumi
    Berikut ini adalah cara atau sikap kita saat menghadapi gempa bumi, yaitu :

    1. Bila berada di dalam rumah :
    Jangan panik dan jangan berlari keluar, berlindunglah di bawah meja atau tempat tidur.
    Bila tidak ada, lindungilah kepala dengan bantal atau benda lainnya.
    Jauhi rak buku, lemari dan kaca jendela.
    Hati-hati terhadap langit-langit yang mungkin runtuh, benda-benda yang tergantung di dinding dan sebagainya.
    2. Bila berada di luar ruangan :
    Jauhi bangunan tinggi, dinding, tebing terjal, pusat listrik dan tiang listrik, papan reklame, pohon yang tinggi dan sebagainya.
    Usahakan dapat mencapai daerah yang terbuka.
    Jauhi rak-rak dan kaca jendela.
    3. Bila berada di dalam ruangan umum :
    Jangan panik dan jangan berlari keluar karena kemungkinan dipenuhi orang.
    Jauhi benda-benda yang mudah tergelincir seperti rak, lemari, kaca jendela dan sebagainya.
    4. Bila sedang mengendarai kendaraan :
    Segera hentikan di tempat yang terbuka.
    Jangan berhenti di atas jembatan atau di bawah jembatan layang/jembatan penyeberangan.
    5. Bila sedang berada di pusat perbelanjaan, bioskop, dan lantai dasar mall :
    Jangan menyebabkan kepanikan atau korban dari kepanikan.
    Ikuti semua petunjuk dari pegawai atau satpam.
    6. Bila sedang berada di dalam lift :
    Jangan menggunakan lift saat terjadi gempabumi atau kebakaran. Lebih baik menggunakan tangga darurat.
    Jika anda merasakan getaran gempabumi saat berada di dalam lift, maka tekanlah semua tombol.
    Ketika lift berhenti, keluarlah, lihat keamanannya dan mengungsilah.
    Jika anda terjebak dalam lift, hubungi manajer gedung dengan menggunakan interphone jika tersedia.
    7. Bila sedang berada di dalam kereta api :
    Berpeganganlah dengan erat pada tiang sehingga anda tidak akan terjatuh seandainya kereta dihentikan secara mendadak
    Bersikap tenanglah mengikuti penjelasan dari petugas kereta
    Salah mengerti terhadap informasi petugas kereta atau stasiun akan mengakibatkan kepanikan
    8. Bila sedang berada di gunung/pantai :
    Ada kemungkinan lonsor terjadi dari atas gunung. Menjauhlah langsung ke tempat aman.
    Di pesisir pantai, bahayanya datang dari tsunami. Jika Anda merasakan getaran dan tanda-tanda tsunami tampak, cepatlah mengungsi ke dataran yang tinggi.
    9. Beri pertolongan :
    Karena petugas kesehatan dari rumah-rumah sakit akan mengalami kesulitan datang ke tempat kejadian maka bersiaplah memberikan pertolongan pertama kepada orang-orang berada di sekitar Anda.
    10.Evakuasi :
    Tempat-tempat pengungsian biasanya telah diatur oleh pemerintah daerah. Pengungsian perlu dilakukan jika kebakaran meluas akibat gempa bumi. Pada prinsipnya, evakuasi dilakukan dengan berjalan kaki di bawah kawalan petugas polisi atau instansi pemerintah.
    11. Dengarkan informasi :
    Saat gempa bumi terjadi, masyarakat terpukul kejiwaannya. Untuk mencegah kepanikan, penting sekali setiap orang bersikap tenang dan bertindaklah sesuai dengan informasi yang benar. Anda dapat memperoleh informasi yang benar dari pihak berwenang, polisi, atau petugas PMK. Jangan bertindak karena informasi yang tidak jelas.
    Alat Pengukur Gempa Bumi
    Seismograf adalah alat yang digunakan atau dipakai untuk mengukur kuat dan lemahnya suatu gempa bumi. Berdasarkan arah getaran yang diukur, seismograf dibedakan menjadi 2 (dua) macam yaitu :

    Seismograf horisontal yaitu suatu jenis seismograf yang mencatat kekuatan gempa ataupun getaran bumi dengan arah secara horizontal (mendatar).
    Seismograf vertikal yaitu jenis dari seismograf yang mencatat getaran bumi dengan arah secara vertikal.
    Besaran gempa didasarkan pada amplitudo gelombang tektonik dan dicatat oleh alat Seismograf dengan menggunakan Skala Richter.
    Demikianlah artikel mengenai pengertian gempa bumi, jenis-jenis, penyebab, akibat, dan cara menghadapi gempa bumi. Semoga artikel ini dapat berguna serta dapat bermanfaat untuk Anda semua.(forumteropongid)

    SUMBER:
    https://bpbd.bandaacehkota.go.id/2018/08/05/pengertian-gempa-bumi-jenis-jenis-penyebab-akibat-dan-cara-menghadapi-gempa-bumi/

    https://images.app.goo.gl/QgAWN54sXsy3a2J4A

  • Lempeng Tektonik

     

    Pengertian Lempeng Tektonik

    Lempeng merupakan lapisan penyusun bumi paling atas yang sebagian besar mempunyai ketebalan hingga 100 km. Sementara tektonik adalah adanya proses dari pergerakan yang terdapat pada kerak bumi hingga membuat timbulnya beberapa fenomena seperti lipatan, lekukan hingga patahan yang berdampak pada tinggi rendahnya permukaan bumi.

    Lempeng tektonik erat kaitannya dengan lapisan litosfer pada bumi yang memang menjadi lapisan paling atas dari bumi. Lapisan yang tersusun dari kerak bumi dan mantel bumi, keduanya memiliki sifat sangat padat dan kaku. Lapisan litosfer mengalami proses yang berujung membentuk lempeng-lempeng tektonik pada bumi.

    Berdasar dari penjelasan di atas, dapat dikatakan bahwa lempeng tektonik adalah bagian paling atas bumi dengan fenomena yang muncul akibat proses pergerakan dan mempengaruhi tinggi rendah dari bumi tersebut. Secara langsung adanya proses pergerakan ini membuat pengaruh signifikan pada penampakan permukaan bumi yang dinamis.

    Indonesia terletak pada permukaan tiga lempeng tektonik besar yaitu lempeng eurasia, lempeng Indo-Australia dan Lempeng Pasifik. Letak geologis Indonesia dilihat berdasarkan pada titik pertemuan dari tiga lempeng tersebut. Kondisi ini memunculkan rawan terjadinya gempa di daerah yang terletak pada pertemuan lempeng tektonik tersebut.

    Teori Lempeng Tektonik

    Yang dimaksud dengan teori lempeng tektonik adalah teori dasar di bidang geologi, dikembangkan untuk dapat memberi penjelasan secara mendalam mengenai fakta dari pergerakan besar lapisan permukaan paling atas bumi atau litosfer secara alami. Teori lempeng tektonik digunakan untuk menjelaskan interaksi dari lempeng-lempeng yang ada dan menimbulkan beberapa asumsi ini.

    • Terdapat pembentukan material lempeng yang baru.
    • Material permukaan paling atas bumi membentuk lempeng yang kaku.
    • Luas dari area permukaan bumi konstan.
    • Lempeng permukaan paling atas bumi mampu mengirim tekanan horizontal tanpa penyambung.

    Contoh Teori Lempeng Tektonik

    Lempeng tektonik dipakai untuk menjelaskan pergeseran benua, fenomena yang terjadi saat benua masih menjadi satu kesatuan yang disebut benua super besar atau supercontinent dan dinamakan dengan sebutan Pangea. Hingga tak lama setelah itu benua yang muncul terbagi menjadi beberapa bagian.

    Beberapa bagian benua yang terbagi ini dinamakan Gondwana dan Laurasia, munculnya beberapa benua ini ditandai dengan pergerakan dan diibaratkan seperti bongkahan es yang mengapung dan bergerak di lautan. Karena inilah teori lempeng tektonik juga disebut dengan teori pengapungan kontinen, yang diperkuat dengan beberapa bukti seperti berikut.

    • Kesamaan Garis Pantai

    Adanya kecocokan garis pantai ini ditemukan di benua Amerika Selatan dan benua Afrika Barat, kedua benua ini memperlihatkan adanya himpitan benua satu dengan benua lainnya. Jika dilihat dengan seksama, maka dugaan awal menyebutkan bahwa kedua benua ini awalnya adalah satu kesatuan diikuti dengan penelitian berupa pencocokan garis pantai yang ada.

    • Persebaran Fosil

    Munculnya fosil-fosil sama di beberapa benua, seperti Mosasaurus tempat-tempat berbeda di setiap benua yang bahkan sudah dipisahkan oleh lautan. Hal ini memunculkan asumsi, bahwa beberapa tempat tersebut dulunya memang sangat dekat dan dihubungkan oleh daratan. Mesosaurus sendiri merupakan salah satu reptil besar yang hidup di danau air tawar dan sungai.

    Sekitar 260 juta tahun yang lalu, dua benua yang menemukan fosil reptil ini yakni di benua Amerika dan benua Afrika. Kemudian ditemukan juga fosil tanaman Clossopteris yang disebut telah hidup di sekitar 260 juta tahun yang lalu. Tanaman ini ditemukan bersama fosil reptil Cynognathus dan Lystrosaurus di benua Afrika, India, Antartika dan Amerika.

    • Kesamaan Jenis Batuan

    Kecocokan jenis batuan ini muncul di jalur pegunungan Appalachian di bagian timur benua Amerika Utara, pegunungan ini menyebar ke timur laut hingga menghilang di area Newfoundland. Hingga kemudian pegunungan dengan jenis yang sama pada penyusun batuannya di Scandinavia. Untuk memperkuat hal ini dapat dilihat dengan posisi sebelum terpisah.

    Pegunungan yang ada kemudian akan membentuk satu jalur yang menerus, ini menjadi salah satu cara yang dipakai untuk membuktikan teori continent drift. Teori ini dilakukan dengan mempersatukan kesamaan penampakan dari bentuk-bentuk geologi yang telah dipisahkan oleh lautan.

    • Bukti Iklim Purba (Paleoclimatic)

    Iklim masa purba juga menjadi bukti ilmiah, lewat hasil penelitian yang dilakukan dan dipelajari oleh para ahli geologi kebumian. Semua hasil digunakan untuk membuktikan teori benua mengapung, pada 250 juta tahun yang lalu bagian bumi selatan memiliki iklim dingin seperti yang ada di Antartika, Australia, Amerika Selatan dan Afrika serta India.

    Adanya proses glasiasi membuat kondisi ini terjadi secara terus menerus pada beberapa daerah, hingga membuat para ahli memercayai jika daratan telah mengalami glasiasi dari satu benua super yang sama. Setelah itu terpisah dan mengapung menjadi beberapa bagian, inilah yang menjadi teori pengapungan benua.

    • Medan Magnet Benua (Paleomagnetisme)

    Teori yang membuktikan adanya benua super besar juga dibuktikan dengan menentukan intensitas dan arah medan magnet bumi. Hal pertama yang dilakukan adalah dengan menentukan medan magnet purba, lalu melakukan analisis dalam beberapa batuan dengan kandungan mineral dan kaya unsur besi, penggunaan mineral dinamakan dengan fosil kompas.

    Fosil berperan sebagai kompas untuk menunjukkan arah kemagnetan, dipengaruhi juga dengan adanya komposisi basalitis. Karena inilah batuan yang terbentuk mampu merekam arah kutub magnet saat batuan terbentuk. Hingga akhirnya ditemukan kesamaan arah kutub magnet disertai dengan lokasi terbentuknya.

    Kondisi yang membuat perkembangan teori perkembangan lempeng tektonik ke arah perluasan, hasil dari pergerakan vertikal batuan. Namun juga tak menemukan adanya ukuran bertambah besar permukaan bumi, kondisi yang menyebabkan zona subduksi dan sesar translasi. Perkembangan teori tektonik ini yang akhirnya diterima oleh berbagai kalangan.

    Jenis-jenis Batas Lempeng Tektonik





    • Batas Divergen

    Batas Divergen disebut juga sebagai zona pertambahan dan pembentukan lempeng baru, merupakan zona dengan lempeng-lempeng mengalami pergerakan saling menjauh satu sama lain. Bagian kosong karena pergerakan lempeng tektonik menjauh nantinya akan menjauh dari bagian mantel bumi yang terdapat di bagian paling luar bumi.

    Kondisi yang juga menyebabkan adanya mid oceanic ridge atau rift valley, yang bisa membuat lempeng benua terbelah menjadi dua dan memunculkan adanya intrusi magma pada bagian tengah lempeng yang kosong. Intrusi magma muncul karena arus konveksi untuk kemudian mendorong lempeng bergerak ke arah lain.

    • Batas Konvergen

    Adalah zona penghancuran yang membuat lempeng-lempeng di permukaan bumi kemudian mendekat satu sama lain. Salah satu lempeng kemudian masuk dan menembus mantel hingga mengalami peleburan serta penghancuran yang diakibatkan adanya suhu tinggi. Dalam zona konvergen muncul subduksi dan kolisi.

    Apabila lempeng memiliki bahan yang berat maka akan muncul subduksi, sementara jika lempeng dengan bahan ringan menjadi kolisi. Adanya gerakan kolisi di permukaan bumi membuat terciptanya barisan pegunungan dan gerakan subduksi membuat pegunungan vulkanik dengan memunculkan lipatan pada wilayah lempeng yang tertekan.

    • Batas Transform

    Disebut juga batas geser karena pada batas transform tidak terdapat litosfer yang kemudian dihancurkan dan tidak terdapat litosfer baru tercipta. Beberapa lempeng cenderung bergerak secara lateral atau mendatar satu sama lain. Meskipun pada batas ini banyak muncul patahan transform seperti patahan punggung laut yang panjangnya bisa mencapai ratusan kilometer.

    Batas transform juga membuat adanya gerakan relatif sinistral ke arah kiri yang berlawanan, hingga dekstral atau ke kanan yang berlawanan. Kondisi yang menciptakan sesar, seperti misalnya Sesar San Andreas yang terdapat di California dan yang pasti batas transform ini banyak terjadi di dasar laut.

    Poin Penting Terkait Pergerakan Lempeng Bumi

    • Kerak benua di muka bumi memiliki sifat yang ringan dan permanen hingga membuat kerak benua tidak bisa tenggelam. Disebabkan juga karena massa jenis kerak benua sangat rendah, lalu kerak samudera memiliki sifat sementara karena adanya tabrakan.
    • Lempeng benua terbentuk dari adanya kerak benua dan kerak samudera sesuai dengan gaya yang memengaruhi pergerakan lempeng di wilayah tersebut. Letak benua bisa berada jauh di luar batas benua yang berkaitan.
    • Lempeng bumi tidak akan menempati suatu medan atau tempat sama, apabila muncul proses penempatan yang sama sehingga salah satu lempeng akan menjadi gunung atau bagian yang dihancurkan mantel bumi.
    • Apabila terdapat dua lempeng yang saling bergerak berjauhan maka akan muncul kerak samudera yang baru di kawasan tersebut. Bumi memiliki sifat konstan, yang artinya tidak mengalami perubahan ukuran baik besar maupun kecil.
    • Gerakan lempeng tektonik sangat lambat, sehingga sulit untuk dirasakan oleh manusia namun jika muncul gerakan secara tiba-tiba dan cepat maka dinamakan gempa bumi. Bentang alam tektonik ditemukan pada batas lempeng.
    SUMBER:
    https://www.sampoernaacademy.sch.id/id/teori-lempeng-tektonik/
    https://images.app.goo.gl/fCrAdgMfXvMJPBfK8
    https://images.app.goo.gl/E2ujL36QLZTPy9Yd8
  • Diberdayakan oleh Blogger.

    Text Widget

    Gunung Berapi

      Gunung berapi   atau   gunung api   secara umum adalah istilah yang dapat didefinisikan sebagai suatu sistem saluran   fluida   panas (bat...

    Cari Blog Ini

    Cloud Numbered Labels

    Popular Posts

    Pages

    Ads 300 x 600

    Copyright © - Cecillia Davina Cristi - Cecillia Davina Cristi - Powered by Blogger - Designed by Johanes Djogan